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Abstract—Convolutional neural networks (CNN) have achieved
prominent performance in facial landmark detection in recent
years. However, the training of such deep network is non-trivial
due to the over-fitting problem caused by the insufficient training
data and the diminishing gradients problem occurred in the back-
propagation. To address these problems, we propose a multi-
task learning framework with supervised neural networks to
jointly detect facial landmarks with a set of related tasks. On
the one hand, to handle the over-fitting problem, the proposed
method takes the advantage of additional task labels to train
the model in a multi-task learning fashion to generate a shared
feature representation for high-level recognition tasks. On the
other hand, in order to tackle the transparency and diminishing
gradients problem, the proposed method enforces supervision to
the intermediate layers of the network, augmenting the gradient
signal propagated from the final layer. Experiments on public
benchmarks validate the effectiveness of the proposed method.

I. INTRODUCTION

Locating facial landmarks such as eyes, nose and mouth is
essential for tasks like face recognition, face tracking and 3D
face modeling. Although extensive studies have been made
in facial landmark detection [1]–[3], it is still challenging
for current approaches in unconstrained environments due to
large head pose variations and partial occlusions. In general,
face alignment research can be categorized into two groups:
template-fitting methods [1] and regression based methods [2].
Regression based methods map the learned features to the
facial landmark space after extracting features from the image.
Cao et al. [2] employs cascaded fern regression with pixel-
difference to predict landmark localization. It is improved in
[3], where the regression problem is formulated with multiple
deep models. To reduce the complexity, [4] proposes a multi-
task learning framework with a single deep network. However,
the relations between the main task and related tasks are not
taken into consideration.

Multi-task learning is a way to train a universal model for
several different but related tasks using a shared representation.
It is generally acknowledged that the model learned in the
multi-task learning fashion [5] has stronger generalization ca-
pability than the one learned in a single task fashion. Existing
multi-task learning methods model the relationships among
different tasks in two ways. One way is to assume the share
of common parameters with other tasks such as a Bayesian
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model sharing a common prior [6]. The other way is to find
latent feature representation among these tasks, for example,
learning a sparse representation shared cross tasks [7]. Multi-
task learning is an appealing approach which improves the
generalization capability of a neural network with shared
features, especially when the data is insufficient. Accordingly,
the unique character of CNN model makes it possible to learn
regression and classification tasks simultaneously.

In addition, most of the conventional feature extraction
approaches for face alignment are handcrafted, which is tricky
and lacking of flexibility. On the contrary, we derive a method
to learn the features automatically in a data-driven manner,
leveraging the deep learning architectures developed in re-
cent years. Deep learning models are a class of multi-layer
networks that can act on the raw input images to compute
high-level representations automatically. One particular type
of deep learning models that have achieved great practical
success is the deep convolutional neural networks (CNNs) [8].
These models stack many layers of linear filters and underlying
receptive fields followed by a nonlinear activation function,
thereby computing abstract features. However, learning a deep
CNN is usually associated with the estimation of millions
of parameters, which often leads to: 1) uncertainty of trans-
parency and robustness of the learned features; 2) over-fitting.

We address these two problems with the employment of
supervision objective functions and multi-task feature learn-
ing. Specifically, this paper proposes a multi-task learning
framework optimized with supervised neural network to jointly
detect facial landmarks with a set of related tasks. The
contribution of this paper is two-fold. First, we impose su-
pervision on multiple layers, instead of only the final layer
like conventional methods, of the neural network to alleviate
the transparency deficiency of the learned features. The model
is improved by adding auxiliary supervised layers connected
to intermediate layers, which encourages discrimination of
learned features in the lower stages. It strengthens the gradient
signal passed in the back-propagation process, and provides
extra guidance in the early layers to avoid the diminishing
gradient problem. Second, we apply the multi-task learning
strategy to improve the generalization capability of the model
by utilizing auxiliary labels instead of samples. To be concrete,
the features of the main task, i.e., facial landmark detection,
is learned simultaneously with several other related high-level
tasks, including glasses detection, smiling detection, gender
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Fig. 1: The framework of the proposed model. Given an input face image, a CNN-based supervised network extracts shared
features, which are the inputs to the facial landmark detection task and the related classification tasks.

prediction, and pose estimation, which provide additional
regularization to the learning of network parameters.

II. MULTI-TASK LEARNING OF SUPERVISED NETWORKS

The framework of the proposed method is illustrated in Fig.
1. The main task is face alignment regression, which aims at
detecting facial landmarks, including eyes, nose and mouth,
in the face image. To obtain a robust feature representation,
several related classification tasks, i.e., pose estimation, smil-
ing detection, glasses detection, and gender prediction, are
incorporated by associating additional labels to the training
samples. Finally, a convolutional neural network is trained over
these tasks in a multi-task learning fashion, which introduces
direct supervision to the intermediate layers to alleviate the
transparency and gradient diminishing problems.
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Fig. 2: Examples of the main task – face alignment, and the
related appearance attribute tasks.

A. Multi-task Learning Formulation

The conventional multi-task learning aims to improve the
performance of multiple related tasks by exploiting the in-
trinsic relationships among them. Accordingly, although the
main objective of our model is to locate facial landmarks, we
incorporate several related facial appearance tasks to derive a
common feature representation. Consequently, the overall loss

is the linear combination of the losses of the main task Lm

and the related tasks Lr.

L(w) = Lm(w) +

T−1∑
a=1

λaLa
r(w) (1)

where λa weights the cost of the a-th task, which can be
determined by the correlation of the related tasks.

We denote the training set by S = (xt
i, y

t
i), i = 1, · · · , N ,

t = 1, · · · , T , where sample xt
i ∈ Rd denotes the raw input

of the t-th task and yti ∈ R denotes the corresponding ground
truth label. An example of the labels for the main task and the
related tasks is demonstrated in Fig. 2. We drop the subscript
i for notational simplicity.

The regression task is to predict five facial points, so the
coordinates of the landmarks are the target value. Squared-
error is used as the cost function for the regression task

Lm(w) = ‖y − f(x;w)‖2

where f(x) is the estimate of the five facial points.
For each related task, we employ the cross-entropy function,

Lr(w) = −y log(p(y|x))

where p(y|x) is a softmax function, which models the class
posterior probability.

Overall, the following optimization problem will be solved:

min
w
‖y − f(x;w)‖2 +

T−1∑
a=1

λa(−y log(p(ya|x))) (2)

Different types of tasks result in different output spaces,
which is difficult to optimize by traditional MTL algorithms.
Thus, we proposed an optimization algorithm with supervised
learning to solve Eq. (2), which is described in Section II-B.



B. Supervised Learning with Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep
learning models that were designed to automatically capture
highly nonlinear mappings between inputs and outputs.

Unlike traditional optimization algorithm, the unique struc-
ture of CNN makes multi-task with different types of loss
functions (regression and classification) and shared repre-
sentation possible. CNNs are usually composed of alternate
convolutional and max-pooling layers to extract hierarchical
features, followed by several fully connected layers. We denote
a recursive function for each layer k = 1, · · · ,K as

Zk = pool(Zk−1 ∗Wk + bk), (3)

where Zk is the feature map of the k-th layer, Wk denotes
the filters to be learned, and bk is the bias term. Note that Zk

is the shared representation between the main task and related
tasks. Eq. (3) and Eq. (2) can be trained jointly to solve the
minimization problem.

Despite of the attractive qualities of CNNs, there nonethe-
less remain some fundamental questions: 1) the features
learned at hidden layers are not always discriminative; 2) over-
fitting occurs when the dataset is small; 3) gradients vanish
when signal propagates back.

We adopt a deeply-supervised method, which provides
integrated direct supervision to hidden layers rather than just
to output layers. Instead of associating a classifier with each
hidden layer [9], we employ regression supervision with every
convolved response. To solve Eq. (1) more accurately and

Feature  map Filters 

Regression loss 

Supervision layer 

Fig. 3: Supervised learning-based feature extraction model.

transparently, we solve Eq. (4) instead,

min
W={w,wk}

L(w) +

K−1∑
k=1

αk`k(wk) (4)

where L is the output objective of the last layer, `k is the
companion objective of the k-th layer which provides an
additional constraint to propagate the supervision to early
layers. Hence,

Lm(W) = ‖y − f(x;w)‖2 +
K−1∑
k=1

αk‖y − f(x;wk)‖2

Lr(w) = −y log(p(y|x))

where w and wk denote the weight parameters of filters with
the output layer and the hidden layers, respectively.
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Fig. 4: The mean error and relative improvement comparison
with ESR [2] and CDCNN [3] over five landmarks: left eye,
right eye, nose, left mouth corner and right mouth corner on
LFPW test dataset.

Note that the supervision is only employed based on the
main task, which guarantees the priority of face alignment
task. Moreover, rather than giving equal importance to the
tasks, we explore the relationship of tasks to eventually
maximize the performance of the main task.

Eq. (4) optimizes the tasks with stochastic gradient descent
to firstly learn the shared representation and then propagate the
errors to refine the representation. The main advantage of Eq.
(4), the supervised learning method, is that it provides direct
hidden layer supervision by introducing regression functions
for each intermediate layer, which can be seen as a regular-
ization term within the learning process. Meanwhile, the main
task-only property of the supervision is of great importance
for multi-task framework to optimize the desired problem.

III. EXPERIMENTS

A. Datasets

The training set [4] is composed of 10000 face images
from LFW dataset and the Internet. Each image is annotated
with five landmarks, i.e., centers of the eyes, nose and corners
of the mouth, as depicted in Fig. 2. All the coordinates are
normalized by the size of bounding box so that their values
range within [0, 1]. We augment the dataset by randomly
selecting 16 bounding boxes, resizing them to the size of
32×32, and then applying a mirror transformation to double
the training set. The testing set is composed of AFLW, AFW,
and LFPW, all of which are widely used by previous facial
landmark detection methods [1]–[4].

Performance is measured by the average detection error and
the failure rate of the facial points. The mean error is measured
by the distance between the predicted landmark position and
the ground truth position normalized by inter-ocular distance
or face width. Note that inter-ocular distance is not suitable
when dataset has large variations because two eyes are not
necessarily visible. So we use the width of the face bounding
box for evaluation in Table I and switch to inter-ocular distance
for fair comparison with other published results. Mean error
larger than 5% is reported as a failure.



TABLE I: Mean Error Comparison of Model Variants(%)

Landmark CNN base Multi-task Supervised Proposed
left eye 4.82 2.58 2.46 1.82

right eye 4.79 2.47 2.32 1.78
nose 5.35 2.78 2.80 2.15

left mouth corner 5.50 3.01 2.98 2.46
right mouth corner 5.45 3.15 2.98 2.50

average error 5.18 2.80 2.71 2.14
failure rate 39.51 30.57 28.06 23.24

B. Network Structure

We use CNN as the basic building block of the system. The
network takes the raw pixels as input and performs regression
on the coordinates of the desired points and classification on
the whole image. Three convolutional layers are stacked after
the input 32×32 RGB image patch. Each convolutional layer
applies 5×5 filters to the multichannel input image and each
convolution layer is not directly connected to pooling layer.
It splits to two ways, one of which propagates as normal
to produce filter responses followed by 3 × 3 pooling and
the other calculates the regression loss of this hidden layer
with five facial points. The fourth layer is a fully-connected
layer that has 64 neurons to represent the shared features
of both main and related tasks. The final layer is composed
of separate sub-networks for the face alignment problem and
related classification tasks, as shown in Fig. 1.
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Fig. 5: The mean error comparison with TSPM [1] and
TCDCN [4] over five landmarks: left eye, right eye, nose,
left mouth corner and right mouth corner on AFW.

C. Implementation Details

We subtract the mean of each pixel from the image and
then scale it to a standard deviation of 1. We adopt the training
procedure used by Krizhevsky et al. [8]. The network is trained
using stochastic gradient decent with a batch size of 128. The
training process starts from the initial momentum 0.9 and
learning rates 0.01 which is adapted during training. More
specifically, if the overall loss is not reduced for 1000 iterations
in a row, the learning rate is dropped by 50%. This procedure
is repeated until convergence.

D. Experiment Results

To validate the effectiveness of the proposed multi-task
framework with supervised learning, we evaluate the results
visually and quantitatively. Table I shows the results with 2500

Fig. 6: Example results on AFLW: faces with occlusion, pose
variation, lighting condition variations and different expres-
sions. The last three cases in red line are inaccurate examples.

test images on AFLW. Single-task face alignment trained with
traditional CNNs serves as the baseline. The first two variants
are trained with either multi-task or supervised learning. The
final model combines both multi-task and supervised learning,
which is the performance of the proposed method. Obviously,
the effectiveness of the multi-task regularization and layer-
wise supervision is clearly validated in Table I. Fig. 6 presents
some example results on AFLW. Furthermore, Fig. 4 compares
with ESR [2] and CDCNN [3] methods on LFPW test dataset.
Finally, Fig. 5 presents the similar result in comparison with
TSPM [1] and TCDCN [4] methods on AFW.

IV. CONCLUSION

This paper presents a novel deep learning-based face align-
ment method with two primary contributions compared with
conventional CNNs: 1) the multi-task learning framework
with shared features of multiple related tasks to improve the
generalization capability of the network; 2) the employment of
supervision layers to strengthen the discriminativeness of the
learned features. Experiments on face alignment validated the
effectiveness of the proposed model in comparison with tra-
ditional convolutional neural networks of single task learning
and other state-of-the-art methods.
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